15 research outputs found

    SN 2021zny: an early flux excess combined with late-time oxygen emission suggests a double white dwarf merger event

    Get PDF
    We present a photometric and spectroscopic analysis of the ultra-luminous and slowly evolving 03fg-like Type Ia SN 2021zny. Our observational campaign starts from 5.3\sim5.3 hours after explosion (making SN 2021zny one of the earliest observed members of its class), with dense multi-wavelength coverage from a variety of ground- and space-based telescopes, and is concluded with a nebular spectrum 10\sim10 months after peak brightness. SN 2021zny displayed several characteristics of its class, such as the peak brightness (MB=19.95M_{B}=-19.95 mag), the slow decline (Δm15(B)=0.62\Delta m_{15}(B) = 0.62 mag), the blue early-time colours, the low ejecta velocities and the presence of significant unburned material above the photosphere. However, a flux excess for the first 1.5\sim1.5 days after explosion is observed in four photometric bands, making SN 2021zny the third 03fg-like event with this distinct behavior, while its +313+313 d spectrum shows prominent [O I] lines, a very unusual characteristic of thermonuclear SNe. The early flux excess can be explained as the outcome of the interaction of the ejecta with 0.04M\sim0.04\:\mathrm{M_{\odot}} of H/He-poor circumstellar material at a distance of 1012\sim10^{12} cm, while the low ionization state of the late-time spectrum reveals low abundances of stable iron-peak elements. All our observations are in accordance with a progenitor system of two carbon/oxygen white dwarfs that undergo a merger event, with the disrupted white dwarf ejecting carbon-rich circumstellar material prior to the primary white dwarf detonation.Comment: 19 pages, 16 figures, accepted for publication in MNRA

    Revealing the progenitor of SN 2021zby through analysis of the TESSTESS shock-cooling light curve

    Full text link
    We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) 2021zby. TESSTESS captured the prominent early shock cooling peak of SN 2021zby within the first \sim10 days after explosion with a 30-minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during the shock cooling phase. Using a multi-band model fit, we find that the inferred properties of its progenitor are consistent with a red supergiant or yellow supergiant, with an envelope mass of \sim0.3-3.0 M_\odot and an envelope radius of \sim50-350R R_\odot. These inferred progenitor properties are similar to those of other SNe IIb with double-peak feature, such as SNe 1993J, 2011dh, 2016gkg and 2017jgh. This study further validates the importance of the high cadence and early coverage in resolving the shape of the shock cooling light curve, while the multi-band observations, especially UV, is also necessary to fully constrain the progenitor properties.Comment: 12 pages, 5 figures, 2 tables, submitted to ApJ

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Flares from the centers of galaxies with Gaia and OGLE surveys

    Get PDF
    Modern wide-field-of-view and all-sky satellites (e.g. Gaia) and ground based surveys (e.g. OGLE) repeatedly cover a large part of the sky and are detecting new, transient astrophysical sources on daily basis. In this thesis I analyzed the data from Gaia and OGLE transient surveys, with special focus on transients located near the centres of galaxies to detect possible Tidal Disruption Events. These occur when a star gets too close to a Super-Massive Black Hole, which lurks in the centres of most galaxies, and gets disrupted due to the black hole\u27s gravitational tidal forces. The goal of my research was to detect possible Tidal Disruption Events and eliminate false candidates, such as supernovae. The work involved daily inspection of new alerts, identified with Gaia and OGLE Transient Detection System. I searched for potential transients in galactic nuclei and in case there was such a transient detected, follow-up spectroscopic observations were initiated in order to help classify the object. During the course of my work I analyzed spectra obtained with the largest telescopes in the world (SALT, VLT) and performed the spectral template matching, recognition of spectral features related to known classes of transients, determination of redshift etc
    corecore